

Nokia Research Center Edmund Coersmeier 03. March 2004

Overview

- Multi-antenna system
- Cost reduction
- Transmitter architecture hardware and software
- Simulation results
- Conclusion

Multi-antenna system

- High data rates, improved system performance
- Cost reduction through low cost analog components

Transmitter architecture

Error performance surface

Multi-antenna transmitter architecture

Single processor for several branches

Imperfect analog filter frequency response

- Two different imperfect analog filters for I- and Qbranch
- Imperfections are precompensated in digital domain

Imperfect 16-QAM

16-QAM with 3-coefficient pre-equalizer

16-QAM with 19-coefficient pre-equalizer

Conclusion

- Multi-antenna transmitter requires cheap analog front-ends
- Digital pre-equalization compensates imperfect analog filters
- Software-based pre-equalization approach reduces hardware costs

